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ABSTRACT 

We show tha t  the universal torsion free homomorphic  image of any group 

given by a sufficiently 'small '  presentation is locally indicable, and give 

an application to a conjecture of Levin about  equations over torsion free 

groups. 

1. I n t r o d u c t i o n  

Let G be a group. The set of normal subgroups N ~ G such that  G/N is torsion- 

free is closed with respect to arbitrary intersections, so contains a unique minimal 

element p(G), the t o r s i o n - f r e e  r ad ica l  of G. The quotient group G -- G/p(G) 
is thus universal among all torsion-free homomorphic images of the group G. The 

purpose of the present paper is to show that,  if G has a presentation that  is 'small' 
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in the sense that  it has few relations, and they are short words in the generators, 

then this universal torsion-free homomorphic image G is locally indicable. Recall 

that  a group H is said to be ind icab le  if there is an epimorphism from H to the 

infinite cyclic group; and H is said to be local ly  i nd icab le  if every nontrivial, 

finitely generated subgroup K C H is indicable. Since much is known about  

one-relator products of locally indicable groups [1, 2, 7], we can then apply those 

results to one-relator products of torsion-free groups in general. Specifically, we 

prove the following results. 

LEMMA 1.1: Let G be a 1-relator group. Then G is locally indicable. 

THEOREM 1.2: Let G be a 2-relator group in which one relator has length at 

most 4. Then G is locally indicable. 

THEOREM 1.3: Let G be a 2-relator group in which one relator has length 5 

and the other has length at most 8. Then G is locally indicable. 

THEOREM 1.4: Let G be a group with a presentation having at most 5 relators, 

each of length at most 3. Then G is locally indicable. 

Let us define the c o m p l e x i t y  of a finite presentation T' to be c(~ ~ = 

~-~(t(r)  - 2), where g(r) denotes the length of a word r and the sum is over 

all relators that  are not powers of generators. 

COROLLARY 1.5: Let G be a group given by a presentation of complexity at 

most 5. Then G is locally indicable. 

Proo~ Let P be a presentation for G of complexity at most 5. If  P contains 

a relator of the form x n for some generator x and some integer n r 0, then 

x n -- 1 in G so x = 1 in G. Hence this relator, together with x, can be omit ted 

from P (deleting any occurrences of x in other relators) without changing G or 

increasing the complexity. If  P has a relator of the form xy or xy -1 for two 

distinct generators x, y, then we can remove this relator and y from P,  replacing 

every other occurrence of y in other relators by x -1 or x, again without changing 

or increasing the complexity. Hence we may assume that  every relator of :P has 

length at least 3. Suppose P contains a relator x y W  for some word W of length 

greater than 1. We may introduce a new generator z and replace the relator x y W  

by two relators xyz,  z - l W .  This does not affect either G or c(:P). Repeating 

this argument,  we can reduce :P to a presentation for G with all relators of length 

exactly 3. Now apply Theorem 1.4. | 
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These results are best possible, as the following examples show. 

Example:  The Fibonacci group G = F(2, 6) has presentations 

X l , . . . , X 6  [ XlX2 : X 3 , . . . , X 5 X 6  ~ X l , X 6 X l  ~ X 2 )  

and 

(a, b [ a- lb2ab 2 = b- la2ba 2 = 1 I. 

The first of these has six relators, each of length exactly 3, while the second has 

two relators, each of length 6. Now G is the fundamental group of an aspherical 

3-manifold [6], so torsion-free, and so G = G. However, G is finitely generated 

and non-indicable, so not locally indicable. 

Example:  The group G = (a,b I abab-2 = a-6bab = 1} is presented with two 

relators, of lengths 5 and 9 respectively. But G is isomorphic to the torsion-free 

centrally extended triangle group F(2, 3, 7) -- (a, b, c[  a 7 = b 3 = c 2 = a b c }  [10], 

w Indeed G = [G, G] = 7rl(M) for a certain aspherical 3-manifold M [10]. 

However, as G is perfect, it is not locally indicable. 

Finally, we apply these results to the following conjecture of Levin [9]. 

CONJECTURE: Let  A,  B be torsion-free groups, and w E A * B a cyclically 

reduced word o f  length at  least 2. Let N ( w )  denote the normal  closure o f  w in 

A , B .  Then  A n  N ( w )  = {1}. 

The conjecture is known to hold for A, B locally indicable, but remains open 

in general. Combining this with our results on small presentations, we are able 

to prove the following. 

THEOREM 1.6: Let  A, B be torsion-free groups, and suppose a E A can be 

expressed in the form 
n 

a = ] [  ViWe(i)V~ -1 

i=1 

with n <_ 4 and e(i) = +1 for each i. Then a = 1. 

Levin's conjecture is equivalent to the assertion of this theorem, without the 

restriction on n. 
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2. P i c t u r e s  a n d  n o r m s  

Let G = ( A *  B ) / N ( w )  be a one-relator product of two groups A and B, that  is, 

the quotient of their free product by the normal closure N = N(w)  of a single 

element w E A ,  B, assumed to be a cyclically reduced word of length at least 2, 

called the r e l a to r .  If u E N(w)  then u can be written as a product of conjugates 

of W-l-l: 
n 

u = n viw~(i)vi-1, 
i = l  

with c(i) -- +1 for all i. We define v(u), the n o r m  of u, to be the least value of n 

among all such expressions for u. For u E (A * B) ". N(w) ,  we define v(u) = oc. 

In terms of the norm, if a r 1 in A, then Theorem 1.6 says that  v(a) >_ 5, 

while Levin's Conjecture says that  v(a) = oc. 

We refer the reader to [8] for detailed definitions of p i c t u r e s  over the one- 

relator product  G = ( A * B ) / N ( w )  on a surface E. In this paper we are interested 

only in the case E = D 2, and almost exclusively with c o n n e c t e d  pictures. A 

p i c t u r e  on D 2 over G consists of a properly embedded graph P in D 2 (except 

that  some edges of the graph, instead of joining vertices to vertices, are allowed to 

join vertices to points on OD 2, or even join two points of OD2). The components 

of D 2 \ ~o are known as regions ,  and are divided into A-regions and B-regions. 

Every edge separates an A-region from a B-region. To each c o r n e r  of a region 

(either a point where the region meets a vertex, or component of region M OD 2) 

is associated a label ,  which is an element of X if the region is an X-region (X -- 

A, B). The labels around a vertex, read counterclockwise, spell a word called 

the v e r t e x  label ,  which is required to be w +1 in cyclically reduced form (up to 

cyclic permutation).  The clockwise label around OD 2 is called the b o u n d a r y  

label .  The clockwise labels around a simply connected A- (resp. B-) region 

spell a word which is required to be the identity in A (resp. B). For non-simply 

connected regions there is a more complicated condition, which need not concern 

us here. (For example, the two boundary labels of an annular region are required 

to satisfy a conjugacy relation.) A picture is c o n n e c t e d  if it is connected as a 

graph. 

From our point of view, the key fact about pictures is the following. There 

exists a picture on D 2 over G with boundary label u C A * B if and only if 

u E N(w),  and then v(u) is the minimum number of vertices in such a picture. 

See for example [8] for details. 
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P r o o f  o f  Theorem 1.6: Suppose that  Levin's Conjecture is false. Choose a E 

(A U B) \ { 1 }  of minimum norm n say. Then 1 < n = u(a) < co. Without  loss 

of generality, we may assume that  a E A. 

Let P be a picture over G with n vertices and boundary label a. By the 

assumption of minimality of u(a), it follows that  P is connected. For otherwise 

there is a subpicture with fewer vertices and boundary label b E A U B. By 

minimality we have b = 1, so this subpicture may be removed, contradicting 

= n ,  

Since a E A U B, it also follows that  no arc of P meets the boundary of D 2. 

Shrinking the boundary OD 2 to a point, we obtain a tessellation T of S 2 with 

n < 4 vertices. If, for each positive integer k, we let Fk denote the number of 

k-sided faces of T, then 
o o  

~-'~.(k - 2)Fk = 2n - 4 <_ 4 
k = l  

by Euler 's formula. 

Define abstract  groups A0 and B0 as follows. The generators of A0 are the 

A-letters appearing in w, and the defining relators are the boundary labels of 

the disc A-regions of P.  Since these are identities in A, the group A0 comes 

equipped with a natural  homomorphism A0 ~ A, and a E A is the image of some 

a0 E A0 under this homomorphism. The group Bo and homomorphism B0 ~ B 

are defined in an analogous way. Since A and B are torsion-free, these natural  

homomorphisms Ao --* A and Bo --~ B factor through Ao and Bo respectively. 

Note that  no relator of Ao or Bo has the form x t for any t E Z, since A , B  

are torsion-free and w is cyclically reduced. Moreover, each k-sided face of T 

represents a relator of Ao or Bo of length k, with the sole exception of the face 

arising from the shrinking of OD 2. Since that  face has a positive number of 

sides, it follows from the above equation that  c(Ao) + c(Bo) < 5, whence both  

A0 and/~0 are locally indicable, by Corollary 1.5. Since Levin's conjecture holds 

for locally indicable groups [2], it follows that  the image of a0 in Ao vanishes, 

whence a = 1 in A, as claimed. 1 

3. Proofs  of  the main results 

We first prove a series of lemmas concerning groups whose universal torsion-free 

images are locally indicable. 
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LEMMA 1.1: Let G be a 1-relator group. Then G is locally indicable. 

Proof" Suppose G = (xx(A E A) [ sin), where m > 1 and s is not a p r o p e r  

power. Then s = 1 in G, so G is a homomorphic image of the 1-relator group 

Go -- (x~ [ s). But Go is torsion-free, since s is not a proper power, and so 

= Go. Finally, torsion-free one-relator groups are locally indicable [2], so G is 

locally indicable, as claimed. I 

LEMMA 3.1: Let a be any integer, and let Ms denote the metabelian one-relator 

group Ms  = (x, y [ x y x - l y - ~ ) .  Then every torsion-free homomorphic image of 

Ms is locally indicable. 

Proof'. Ms  is itself locally indicable, being a torsion-free one-relator group [2]. 

Suppose K is a normal subgroup of M~ such that  H -- M ~ / K  is torsion-free. 

If  y E K,  then H is cyclic, either of order 1 or oo (since H is torsion free). 

In either case H is locally indicable. Now the normal closure A of y in Ms is 

locally cyclic, generated by y~ = x - t y x  t for t E Z, with Yt-1 = y{. Hence every 

element of A is conjugate in Ma to a power of y. If  some a ~ 1 E A N K,  then 

yk E K for some k ~ 0, so y E K since H is torsion-free, so H is locally indicable. 

The only possibility remaining to consider is that  K contains some element of 

M~\A .  Such an element has the form xka for some k ~ 0 and a E A. But then 

y (~k-1) -- [(xka)-l ,y] E K,  so unless a k ---- 1 we deduce that  y E K and H 

locally indicable, as before. 

Finally, if a k -- 1 then a = • and M~ has a free abelian subgroup of rank 2 

and index 2. It  follows that  H has a cyclic subgroup of finite index, and since H 

is torsion-free it must be infinite cyclic. I 

LEMMA 3.2: Let G be a torsion-free group containing a free abelian subgroup 

A of  rank r < 2 and of finite index in G. Then G is locally indicable. 

Proof'. Without  loss of generality, we assume that  A is normal in G. Then the 

quotient group F = G/A  acts (linearly) on A ~ Z ~ via conjugation in G. We 

consider first the case where this action is orientation-preserving, in other words 

by matrices of determinant 1. In this case we will show that  G is itself free 

abelian, arguing by induction on the order of F. In the initial case, G = A and 

there is nothing to prove. For the inductive step we may assume that  F is simple. 

Suppose that  1 ~  g E G a c t s v i a a m a t r i x B  E SL(r ,Z).  For some k > 1, 

1 r gk E A, since G is torsion-free. Since g commutes with gk, at least one of 



Vol. 98, 1997 UNIVE R S AL  T O R S I O N - F R E E  I M A G E  215 

the eigenvalues of B is 1. But r _< 2 and de t (B)= l ,  so all eigenvalues of B are 

equal to 1, and B is parabolic. Moreover, B k = I ,  so B = I .  Hence A is central 

in G. 

If F is nonabelian, then it is perfect, so 

H2(r, A) - Hom(H2(r) ,  A) • Ext (HI(F) ,  A), 

by the universal coefficient theorem (see e.g. [5], p. 49 or [3], p. 8). But the right 

hand side vanishes, because H2(F) is finite and Hi(F)  = 0. Hence every central 

extension of A by F splits - -  in particular G - A • F, contradicting the fact that  

G is torsion-free. Hence F is cyclic of prime order. Since A is central in G, it 

follows that  G is abelian, and hence free abelian of rank r. 

Finally, suppose that  the action of F on A is not orientation-preserving. There 

is a subgroup A of index 2 in F such that  the restriction of the action to A 

is orientation-preserving; and by the above the corresponding subgroup H of 

index 2 in G is free abelian. We may therefore assume that  A --- H.  Choose 

x E G \H ,  and let B be the corresponding matrix in GL(r, Z). As before, one of 

the eigenvalues of B is 1, but det(B)--  -1, so r = 2 and the second eigenvalue is 

-1. Moreover the eigenspace N of-1  can readily be seen to be an infinite cyclic 

normal subgroup of G, and G is a semidirect product of N with the centraliser 

C of x in G. By the orientation-preserving case, C is also infinite cyclic. Hence 

G is isomorphic to (x, y [ xyx - l y } ,  the fundamental group of the Klein bottle. 

In particular G is locally indicable. | 

Definition: A o n e - r e l a t o r  e x t e n s i o n  of a group G is a one-relator product of 

G with a free group. 

Note that  a one-relator extension H of a locally indicable group G is locally 

indicable, by [7], provided the relator is not a proper power. On the other hand, 

if the relator has the form s m where s is not a proper power, then H is the 

one-relator product with relator s, and so H is locally indicable. 

THEOREM 1.2: Let G be a 2-relator group in which one relator has length at 

most 4. Then G is locally indicable. 

Proof'. Let G = (Xl , . . .  I r, s/, where r has length at most 4. If  some generator 

occurs exactly once in r, then we may use r to rewrite that  generator in terms of 
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the others, obtaining a one-relator presentation of G with fewer generators. In 

this case the result follows from Lemma 1.1. 

Moreover, if either relator is a proper power, we may replace it by its root 

without affecting G, so we may assume that  neither relator is a power. In 
2 2 particular, we may assume that  r has one of the forms xlx2x-~lxi21 or x l x  2. 

Note that  H = (xl, x2 I r) is either free abelian of rank 2 or the Klein bott le 

group. In either case every torsion-free homomorphic image of H is locally indi- 

cable. If s is equivalent, modulo r, to a word in Xl,X2, then G is a free product  

of a homomorphic image of H with a free group, and so G is locally indicable. 

Otherwise G is a one-relator extension of H,  and so again G is locally indicable. 

| 

THEOREM 1.3: Let G be a 2-relator group in which one relator has length 5 and 

the other has length at most 8. Then G is locally indicable. 

Proof'. Let G -- ( x l , . . .  I r, s/, where r has length 5. As in the proof of Theorem 

1.2, we may assume that  r involves precisely two generators, say xl ,x2 ,  each 

at least twice. Without  loss of generality, r has one of the forms (i) x2x2xlx2, 

(ii) X21X21XlX2, (iii) X12X21XlX2, (iv) Xl2X2XlX2, or (v) 3 2 XlX 2. 

In case (i) we may replace the generator x2 by y = xlx2. Then r is a word 

of length 3 in xl ,  y, and so the result follows from Theorem 1.2. In case (ii) the 

group H = <Xl,X2 I r) is isomorphic to the metabelian group M-2,  and in case 

(iii) H is isomorphic to M2. In either case every torsion-free homomorphic image 

of H is locally indicable, by Lemma 3.1. Now G is either a free product of a 

free group with a homomorphic image of H,  or a one-relator extension of H.  In 

either case, G is locally indicable. 

In cases (iv) and (v), if s is not equivalent (mod r) to a word in Xl,X2, then 

G is a one-relator extension of the one-relator group H,  so G is locally indicable. 

Hence we may assume that  s is equivalent (mod r) to such a word s', say. Note 

also that  s '  may be chosen to be no longer than the word s. Then G is a free 

product of a free group with G' = (xl ,x2 ] r, s'). It  therefore suffices to show 

that  G'  is locally indicable. Let C be the subgroup of G'  generated by x31 . Then 

C is central in G',  and G" = G' /C is either a free product of Z2 and Z3, or a 

one-relator product of Z2 and Z3, with relator s" of length at most 8. I t  follows 

also tha t  G'  is a central extension of G". 
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Suppose first t ha t  G" ~- Z2 * Z3. Then  either G '  = {1} (if C is finite), or 

G' = G'  = (Xl ,X2 I t } ,  the trefoil knot  group, which is locally indicable, being a 

torsion-free one-re la tor  group. 

Hence we m a y  assume tha t  G" is a one-relator  p roduc t  of Z2 and Z3. In  

par t icular ,  if we can show tha t  G" is finite, then  so is G t, so G~ is tr ivial .  

In case (v) this is au tomat ic ,  since the free produc t  length of s" is at  mos t  8, 

and any such one-re la tor  p roduc t  of the modula r  group is finite (see for example  

[4]). 

In case (iv) we can replace x2 by y = x l x 2 ,  and r becomes x~-3y 2, as in case 

(v). In this case, however, the word s ~ may  have become extended in length by 

the rewri t ing process. Specifically, s ~ is a word of length a t  mos t  8 in x l , x 2 ,  

which we m a y  assume involves Xl at  least twice, so when rewri t ten  in t e rms  of 

x l ,  y the length of s t m a y  increase to (at most)  14, wi th  (at  most )  6 occurrences 

of y, and hence the result ing word s" E Z2 * Z3 has free produc t  length at  mos t  

12 in Z2 * •3. By [4], we can argue as above unless s"  is one of (x ly)  6 or [Xl, y]3 

(up to cyclic p e r m u t a t i o n  and inversion). Let  us examine how such words can 

arise as s t, . 

I f  s"  involves 6 occurrences of y, then  s t, wri t ten  in t e rms  of x l ,  x2, involves 

precisely 6 occurrences of x2 and 2 of xl .  In other  words, we m a y  assume tha t  

s '  a ~ b where 6 = =t=l, a r 0 r b and l a l + l b l  6; or s' 2 • X l X 2 X l X 2 ,  - ~  ~ X l X  2 �9 

Subst i tu t ing  x2 = x-11y gives s '  = Xl(x-Zly)ax~(x-~ly)b;  or s '  ---- x2(x-~ly)  +6. We 

can rule out  the second form, as it gives s"  = x l y ( x 2 y )  5 or s" = x 2 y ( x l y )  5. 

Hence only the first form can occur. Since at  least one of ]al, ]b I is greater  t han  

2, there is a subword ( y x l y x : y )  • in s ' ,  which rules out  the possibil i ty t ha t  

s" = Ix1, y]3. Hence we m a y  assume tha t  s"  = ( x l y )  6. If  no cancellat ion occurs 

in rewri t ing s t, then  a, b < 0 and ~ = 1, so s '  = ( x l y - 1 ) - ~ x 2 ( y - : x : ) - : - b y - : x : ,  

and the cyclically reduced form of s" has precisely two x 2 and four Xl letters,  

a contradict ion.  Hence cancellat ion does occur. This  cancellat ion mus t  involve 

precisely one x :  symbol  wi th  one x~-: symbol ,  and all o ther  occurrences of Xl 

mus t  have the  same sign. There  are two ways in which this can happen.  Firstly,  

= - 1  and a, b have the same sign (which we m a y  assume is posit ive).  But  then  

y2 appears  in the cyclically reduced form of s t, and s" has free p roduc t  length 

less t h a n  12, a contradict ion.  Secondly, 6 = 1 = b, and a = - 5 .  In this case 

s t = x l ( y - l x l ) 5 . x l . x - ~ l y ,  so s"  = (x :y)  6, as required. This  last  Case is therefore 

the only possibility. 
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We are thus reduced to the case where 

G = ( X l , X  2 [ X12X2XlX2, X25XlX2Xl>. 

But then G/[G,G] is infinite cyclic, while a calculation using the 

Reidemeister-Schreier rewriting process shows that  [G, G] is free abelian of 

rank 2. Hence G is locally indicable. | 

We are now ready to study presentations with few relations, all of length 3. 

LEMMA 3.3: Let G be given by a presentation with at most 3 generators, and 2 

non-equivalent relations of length 3. Then G has a free abelian subgroup of finite 

index, of rank at  most two, and hence every torsion-free homomorphic image of 

G is locally indicable. 

Proof." Suppose first that  some relator has the form x~ 3 for some generator xi. 

Then xi -- 1 in every torsion-free homomorphic image of G, so we may replace G 

by a 1- or 2-generator group with a single relator of length 1, 2, or 3. The result 

is immediate for such a group. A similar argument applies if some generator 

occurs exactly once in the relators. We assume that  neither of these happens. 

Next note that  if G has only two generators Xl, x2, then each relator has the 

form x~2xf  1 with i # j ,  so G is cyclic of finite order, and the only torsion- 

free homomorphic image of G is the trivial group. Hence also if G has three 

generators, but only two of them are involved in relators, then G is infinite 

cyclic, and the result follows. 

We are reduced to the case where G has precisely three generators, each occur- 

ring exactly twice in the relators. We may rewrite this as a 2-generator presen- 

tat ion with a single relation of length 4, involving each generator exactly twice. 

Hence G is either free abelian of rank 2, or isomorphic to M - l ,  the fundamental 

group of the Klein bottle (and so has a free abelian subgroup of rank 2 and index 

2). In either case the result follows from Lemma 3.2. | 

LEMMA 3.4: Let G be given by a presentation with at most 4 generators, in 

which every relator has length at most  3. Then G is locally indicable. 

Proof'. The result is immediate from Lemmas 1.1 and 3.3 if there are fewer than 

four generators, so suppose there are precisely four generators, Xl, x2, x3, x4 say. 

We may assume that  each generator occurs at least twice in relators, so there 
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are at least three relators. We may also assume that the relators are pairwise 

inequivalent. 

Suppose first that  some pair of relators, say rl, r2, involves only three gen- 

erators, say X l , X 2 , X 3 ,  and consider the relations that involve x4. If some re- 

lation contains a single occurrence of x4, then G is a homomorphic image of 

@1, x2, x3 I rl,  r2}, and so G is locally indicable, by Lemma 3.3. Hence any rela- 

tor involving x4 can be assumed to be of the form 2~+1 x4~ ~ for s o m e i < 3 .  If two 

such relators occur, we may combine them to form a relator of length 2, which 

can be eliminated to obtain a 3-generator presentation, and so again G is locally 

indicable. Hence we may assume that only one such relator occurs. Then G is a 

one-relator extension of H, where H is the subgroup of G generated by Xl, x2, x3. 

Since H is locally indicable, so is G. 

Hence we may suppose that any two relators involve, between them, all four 

generators. In particular there are at most four relators, and at least two of them 

involve three generators each. Suppose that rl involves Xl, x2, x3 and r2 involves 

x2, x3, x4. Then any other relator involves both xl, x4, and if there are two other 

relators then each also involves one of x2, x3. Using rl, r2 to rewrite xl, x4 in 

terms of x2, x3, we obtain a 2-generator presentation for G which either has a 

single relator (of length at most 6), or two relators, each of length 5. The result 

follows by Lemma 1.1 and Theorem 1.3. | 

For the rest of this section we assume that our presentation has at least 5 

generators, and either 4 or 5 relators, each of length 3. We also assume that each 

generator occurs at least twice in the relators (so there are at most 7 generators). 

If some generator (say xl) occurs only in one relator rl,  then G is a one-relator 

extension of the group G' = (x2,. . .  [ r l . . . ) .  If we assume inductively that ~t is 

locally indicable, then so is G. Hence we may in fact assume that every generator 

occurs in at least two distinct relators. 

Our next method of attack is to try to merge relators to obtain a presentation 

with fewer relators. This can readily be done when a generator occurs in only 

two relators. Suppose for example that xl occurs in rl and r2. If Xl occurs twice 
2 t in each, then we have rl  = x2x~,  r2 = X lX  b with s, t = =kl. We can then replace 

r2 by the shorter relator s - t  X a X  b . Arguing inductively once again, we may assume 

that this does not happen. Assume then that Xl occurs only once in r2. We may 

then remove xl and r2 from the presentation, at the expense of replacing rl  by 

a relator of length 4 (if xl occurred once in rl)  or 5 (if it occurred twice). 
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To organize this approach, we encode the information concerning generators 

occurring in only two relators in the form of a graph F with a partial orientation. 

The vertices of F are the relators ri, the edges are those generators that  occur 

only in two relators. Thus if a generator xl  occurs in r l  and r2, then there 

will be an edge labelled Xl joining r l  to r2. An edge is oriented towards any 

relator in which the corresponding generator occurs twice. By the above remarks, 

this makes sense in that  no edge is simultaneously oriented in both directions. 

However an edge has no orientation if the corresponding generator occurs once 

only in each of two relators. Note also that  no vertex of F has more than three 

incident edges, and if one incident edge is oriented towards the vertex, there is 

at most one other incident edge, which cannot be oriented towards the vertex. 

We call a pa th  in F s e m i - d i r e c t e d  if all the directed edges in it are oriented in 

the direction of the path. 

LEMMA 3.5: I fF  has a semi-directed cycle, then G is locally indicable. 

Proo~ Suppose F has a semi-directed cycle of length k. Note that  k _> 3. 

Without  loss of generality we may assume that  this cycle involves generators 

X l , . . . , x k ,  and that  xl joins r l  to r2, and so on. Let H = (Xk+l , . . . [  rk+l. . .) .  

Since k _> 3 and the original presentation of G has at most 7 generators, this 

presentation for H has at most 4 generators. Hence /~ is locally indicable, by 

Lemma 3.4. But then we may use r 2 , . . . , r k  to express x 2 , . . . , x k  in terms of 

xl ,  x k + l , . . . ,  so G is a one-relator extension of H,  whence G is locally indicable. 

| 

LEMMA 3.6: I fF  has a cycle, then G is locally indicable. 

Proof: By Lemma 3.5 we may assume that  this cycle is not semi-directed. 

Assuming the cycle is as small as possible, it has length at most 5 (since F has at 

most 5 vertices). Since no two oriented edges have the same terminal vertex, such 

a cycle must consist of two semi-directed paths with the same initial and terminal 

vertices. (Otherwise, there are at least four changes of direction of oriented edges 

as we travel around the cycle. Each time we pass from a positively oriented edge 

to a negatively oriented edge, we must cross an oriented edge between them, so 

the total  number of edges in the cycle would be at least 6.) Suppose the first 

pa th  consists of edges xl  joining r l  to r2, . . . ,  and X~-x joining rk-1 to rk; while 

the second consists of edges xk joining r l  to rk+x, . . . ,  and xm joining rm to 
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rk. Let H = (Xm+ 1 . . . .  [ rm+l , . . .} .  Since there are at least three edges in our 

cycle, we have m _> 3. Since at least two of the edges are oriented (because 

otherwise the cycle would be semi-directed), we can deduce that  at least two 

of the generators occur more than twice in relators. Since the total  number of 

occurrences of generators in relators is at most 15, and every generator occurs at 

least twice, it follows that  there are at most 6 generators. Hence H has at most 

three generators, and at most one more generator than relator. By Lemma 3.3 

every torsion-free homomorphic image of H is locally indicable. 

Without  loss of generality, we may assume that  the edge Xk-1 is oriented, for 

otherwise we could consider instead the semi-directed paths (rl,  r 2 , . . . ,  rk-1) and 

(rl,  r k + l , . . . ,  r,~, rk, rk-1).  Hence rk contains precisely two occurrences of xk-1 

and one of Xm. NOW we can use the relators r 2 , . . . ,  rk-1 to rewrite x2, . .  �9 xk-1 

as words in Y = {Xl, Xm+l, . . .} ,  and the relators r k , . . . ,  rm to write x k , . . . ,  x,~ 

in terms of Y. The group G is then a one-relator product of H and (Xl) with 

relator (a rewritten form of) r l .  If  r l  is conjugate (in H * (xl)) to an element 

of H,  then G is a free product of an infinite cyclic group and a homomorphic 

image of H.  Otherwise G is a one-relator extension of H.  Since every torsion- 

free homomorphic image of H is locally indicable, it follows that  G is locally 

indicable. | 

THEOREM 3.7: I f  G has more generators than relators, then G is locally 

indicable. 

Proo~ If  d is the deficiency of the presentation, then at least 3d generators occur 

only twice in the relators, so F has at least 3d unoriented edges. By Lemma 3.6 

we may assume that  F is a forest, and since F has at most five vertices, we must 

have 1 < d < 53--21, so d = 1. If there are four relators, then there are five 

relators, of total  length 15. Hence precisely three generators occur only twice, 

in other words F has precisely three edges. Hence F is a tree consisting of three 

unoriented edges (corresponding to generators x3, x4, xs, say). We may use three 

of the relators to write x3, x4, x5 in terms of xl ,  x2. Rewriting the fourth relation 

gives a 2-generator, 1-relator presentation for G, and the result follows from 

Theorem 1.1. 

Similarly, if there are five relators, then F has either three or four edges, at 

least three of which are unoriented. Using the relators corresponding to any three 

unoriented edges to write the corresponding generators in terms of the others, we 
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obtain a 3-generator, 2-relator presentat ion for G in which the sum of the relator 

lengths is 9. The result follows from Theorem 1.3. | 

.We are now reduced to the case of a five-generator, five-relator presentat ion 

G = < X l , . . . , x s J  r l , . . . ,  rs>. 

We will use this nota t ion consistently from now on. We continue to analyse the 

s t ructure  of the graph F. 

LEMMA 3.8: I f  more than one edge o f F  is incident at a vertex rl,  then G is 

locM1y indicable. 

Proof." Assume tha t  x4, x5 are edges joining r l  to r4, r5 respectively. Then  r2, r3 

are words in Xx, x2, x3. The group H = (xl, x2, x3[ r2, r3> has the proper ty  tha t  

each of its torsion-free homomorphic  images is locally indicable, by L e m m a  3.3. 

Hence it would suffice to show tha t  G is a homomorphic  image of H.  

Suppose tha t  one of the edges concerned, say x5, is not  oriented away from 

r l .  Then  x5 occurs only once in rs, so r5 can be used to write x5 as a word 

in Xl,X2,X3. Then  at least one of r l , r4  can be used to write x4 as a word in 

Xl, x2, x3, and G is a homomorphic  image of  H,  as required. 

If  bo th  edges are oriented away from r l ,  then without  loss of generality r4 -- 

t for some a c {1, 2, 3} and t -- +1.  Since x~xl ,  r5 -- x~x2 and r l  = x 4 x 5 x  a 

2 2 x 4, x 5, x4x5 generate a subgroup of index 2 in the free group (x4, Xs>, it follows 

tha t  G contains some homomorphic  image of H as a subgroup of index at most  

2. By Lemma 3.3, G has a free abelian subgroup of finite index and of rank at 

most  2, so every homomorphic  image of G is locally indicable. | 

We can now assume tha t  no component  of F contains more than  one edge. 

Since F has precisely five vertices, it can have at most  two edges. 

LEMMA 3.9: I f F  has more than one edge, then G is locally indicable. 

By Lemma 3.8 we may  assume tha t  F has precisely two edges, say Xl joining r l  

and r3, x2 joining r2 and r4. Suppose first tha t  Xl is oriented towards r3, and x2 

towards r4. Then  each generator occurs exactly three times in the relators, so any 

relator involving two occurrences of some generator has to be the terminal  vertex 

of  an oriented edge of F. In part icular  r5 must  involve all three of x3, x4, xs, and 

one of  these three generators, say xs, occurs in each of r l ,  r2. 
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If r3 and r4 have a common generator (say x3), then we may eliminate x3 from 

r3 and r4 to obtain a relator 2~• xl~ 2 . We may also use rl  and r2 to write x2 and 

x4 in terms of xl and x5. These leaves us with a 2-generator presentation with 

two relators of length 5 and (at most) 8. By Theorem 1.3, G is locally indicable. 

If one of x3, x4, say x3, occurs in rl and r3, then we may proceed as follows. 

Use r l , r2  to write x l ,  x2  in terms of x 3 ,  x 4 , x 5 ,  replacing r3 and r 4 by words 

of length 5, such that r3 involves only x3, xs, and r4 involves precisely three 

occurrences of x4. Now use rs to write x4 as a word of length 2 in x3, x5. Then 

G = (x3, x51 r3, r4} is a 2-relator presentation in which the relator r3 has length 

5 and the relator r4 has length 8 (as a word in x3, xs). It follows from Theorem 

1.3 that G is locally indicable. 

Hence suppose that x3 occurs in r2 and r3, while x4 occurs in rl  and r4. 

~ ~ 5 ~ ~ and r5 = x3x4x5 Without loss of generality we have r l  -= x 1 x 4 x  5, r2 ~- x 2 x 3 x  5 

for some a,/~, % 5, e, ~ = +1. We can use r3 and r4 to replace x3, Xa by x~ -2, x~ 2 

~2+~2-2~ and G is respectively. If 7 -- 1 then we can use r5 to rewrite rl  as ~1 ~2 , 

cyclic except possibly if a -- 1 = -t3. But in this case G is a central extension 

of a one-relator product of Z3 * Z4 in which the relator has free product length 

2 or 4. Since any such group is finite, so is G and we are finished. 

Similar arguments hold if ~ = - 1  (using rs to rewrite r2) or if ~ = - 7  (using 

r2 to rewrite rl). In all cases G is locally indicable, as required. 

Secondly, suppose that xl is oriented towards r3, and that x2 is unoriented. 

Now every generator that occurs in r5 occurs in three distinct relators. At least 

one such generator, x5 say, occurs precisely once in each of three distinct relators. 

Now use rl, r2, r5 to write xl, x2, x5 in terms of x3, x4. Rewriting r3, r4 as words 

in x3, x4, we get two relators of lengths 4 and 8 (if x5 occurs in rl and r3) or 5 

and at most 7 (otherwise). The result then follows from Theorems 1.2 and 1.3. 

Finally, suppose that neither edge is oriented. Using rl, r2 to eliminate xl, x2 

as above, we obtain a 3-generator, 3-relator presentation in which the relators 

have lengths 4, 4, 3 respectively. Hence one generator (x3 say) occurs at most 

(hence precisely) three times. In particular there is a relator containing precisely 

one occurrence of x3. Using that relator to eliminate r3, we obtain a 2-relator 

presentation in which either one relator has length at most 4, or the relator 

lengths are 5 and (at most) 6. By Theorems 1.2 and 1.3 again the result follows. 

| 



224 S.D. BRODSKY AND J. HOWIE Isr. J. Math. 

THEOREM 3.10: I f  G = (xl , .  . . ,  Xs[ r l , . . . ,  r5) where each ri has length 3, and 

each of r l , . . . ,  r4 involves three distinct generators, then G is locally indicable. 

Proo~ Firstly, suppose tha t  some generator,  say x5, occurs only once in 

r l , . . . ,  r4 - -  say in r4. In particular,  G is a homomorphic  image of 

G1 : (Xl , . . .x4[  rl ,r2,r3).  

If  in addit ion some other generator  (say x4) occurs at most  once in rl,r2, r3 

(say in r3), then either G1 is isomorphic to 

G2 = (xl,x2,x3[ rl,r2) 

(if x4 occurs once), or G1 is a free product  of a homomorphic  image of G2 with 

an infinite cyclic group. Thus G is either a homomorphic  image of G2 or a one- 

relator extension of such a homomorphic  image. By Lemma 3.3 all torsion-free 

homomorphic  images of G2 are locally indicable, and it follows tha t  G is locally 

indicable. 

Suppose then tha t  x5 occurs precisely once in r4 and not at  all in r l ,  r2, r3, 

while each of X l , . . .  ,x4 occurs at least twice in r l ,  r2, r3. Then  one generator  

(say x4) occurs in all three of r l ,  r2, r3, while each of Xl, x2, x3 occurs in precisely 

two of r l ,  r2, r3. Wi thou t  loss of generality x~ occurs in rj (for i, j E (1, 2, 3}) if 

and only if i r j .  

Now r4 involves x5 and precisely two of x l , . . . ,  x4. Wi thou t  loss of generali ty 

x l  occurs in r4. We can use r2, r3 to write each of x3, x2 respectively as a word 

of length 2 in Xl, x4. This allows us to rewrite r l  as a word of length 5 in Xl, x4. 

Use r4 to write x5 as a word of length 2 in Xl, x2, x3, x4 tha t  definitely involves 

xl ,  and hence as a word of length at most  3 in Xl, x4. Finally, r5 involves x5 at 

most  twice, so can be rewrit ten as a word of length at most  8 in Xl, x4. Thus  G 

has a 2-relator presentat ion with one relator of length 5 and the other  of length 

at most  8, so G is locally indicable, by Theorem 1.3. 

Secondly, suppose tha t  each generator occurs in at  least two of r l , . . . , r 4 ;  

and tha t  the generator  xs occurs in all four of them. Then  each of X l , . . . , x 4  

occurs precisely twice in r l , . . . , r 4 .  By Lemma 3.9 we may assume tha t  F has 

at  most  one edge, so there is at most  one generator  tha t  occurs only twice in 

r l , . . . ,  rs. Hence we may assume tha t  r5 involves three of X l , . . . ,  xa. Assume 

tha t  r5 involves x2, x3, x4. Then  one relator (say r l )  involves xl .  But  we are now 
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in the same circumstances as in the first case of the proof, for each of  r 2 , . . . ,  r5 

involves three distinct generators, and the generator  x l  is involved only once in 

r 2 , . . . ,  rs. As before, G is locally indicable. 

Finally, let us suppose tha t  each of xl ,  x 2 , x 3  occurs twice in the relators 

r l , . . . , r 4 ,  whilst each of x4, x5 occurs three times. Since each of r l , . . . , r 4  

involves at least one of X l , X 2 , X  3 there are essentially only three possibilities 

(up to re-numbering):  

(i) r l ,  r2 involve bo th  xl ,  x2; r3, r4 involve x3; 

(ii) x~ occurs in r~ and r4 (i = 1, 2, 3); 

(iii) xi occurs in ri and r~+l (i = 1, 2, 3). 

We treat  each of these cases separately. Note tha t  at least two of x l ,  x2, x3 occur 

in rs. If  also x4 or x5 occurs in rs, then r5 also involves three distinct generators,  

and some generator  (say xl )  occurs only twice. We may  then argue as in the first 

par t  of the proof  to show tha t  G is locally indicable. Hence we will assume for 

the remainder  of the proof  tha t  r5 is a word in xl ,  x2, x3. 

CASE (i): Note tha t  G is generated by Xl and x2. If  r5 involves only x l , x2 ,  

then G is cyclic, and the result follows. If  X l , X 2 , X 3  each occur in r5, then G 

contains as a subgroup of index at most  2 some homomorphic  image of H = 

(x3, x4, XsI r3, r4/- The  result then follows from Lemmas  3.3 and 3.2. 

Assume then tha t  only xl  and x3 occur in r5. If  r5 = x l x  2 then we use r5, r4 

and r2 to write x l , x 5  and x2 as words in x3,  x 4. Then r3 becomes a relator of 

length 4 and r l  a second relator. The result follows from Theorem 1.3. Finally, 

suppose tha t  r5 = x2x3.  Using r2, r3, r5 to eliminate x2, x3, x5, we obta in  a two 

generator  presentat ion with generators Xl, x4 and two relators r l , r 4 ,  where r l  
4,~=t=2 has one of the forms ~4~+2 3 • • • and r4 h a s  o n e  of the forms x l~  4 ~ 1 ~ 4  o r  X l X  4 X 1 x 4 

--2 • • +1 A case-by-case analysis verifies tha t  G is locally indicable in o r  :UlX 4 x 1 x 4 . 

all cases. 

CASE (ii): Note tha t  x4, x5 occur in each of r l ,  r2, r3, so we can use these rela- 

tors to write Xl, x2, x3 as words in x4, x5, each of which contains one occurrence 

each of xa and of x5. Moreover, these words and their inverses are mutua l ly  

distinct (for otherwise we could combine two of the relators to obta in  an identi ty 

x~ = x~ :1 for some i , j  �9 {1, 2,3}).  
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In particular G is generated by x4, xh, and the subgroup generated by Xl, x2, x3 

has index at most 2. Hence G has a subgroup of finite index that  is a homomor- 

phic image of (x l ,x2 ,x3[  r4,rh). Hence G is locally indicable, by Lemmas 3.3 

and 3.2. 

CASE (iii): Suppose first that  Xa does not occur in rh. Using r l , r2 ,  r4 to write 

x3 , x4 , x5  in terms of Xl,X2, we see that  G is generated by x l , x 2 ,  and hence 

cyclic, since r5 is a word in Xl, x2. Similarly G is cyclic if Xl does not occur in 

rh, so we may assume that  both x l , x 3  occur in rh. 

If  x2 does not occur in rs, then there is no loss of generality in assuming 

that  r5 = x2x3. Use r l ,  r2, r4 to write xl ,  x2, x3 in terms of x4, Xh. Then r3, r5 

each become words of length 6 in x4, Xh, and moreover each contains precisely 3 

occurrences each of x4, Xh. We may also assume that  these words are cyclically 

reduced, or else the result follows from Theorem 1.2. Without loss of generality 

r l  has the f o r m  x l lX4xh ,  SO the rewrite of r5 has one of the f o r m s  X4ZhX4XhZ~X~5 

or X4XhX4X2X4. In the latter case G is generated by Xl = x4x5 and x4, which 

satisfy x2x41xlX4,  and the result follows from Lemma 3.1. In the former case, 

i f a  = 3 = 1 then x4x5 = 1 in G, so G i s c y c l i c .  I f a  = -~3 then G has a 

presentation (a, b I a 3 = b 2, w(a, b) = 1>, where w contains at most 3 occurrences 

of a. In particular G is a finite extension of its central subgroup (b2), so finite. 

We are thus reduced to the case where r5 = X4XhX4XhX41X-~ 1. Recall that  r3 

also rewrites to a word of length 6 involving exactly three occurrences of each of 

x4, Xh. Considering all possible such words, and performing coset enumerations, 

we see that  G is finite except for those cases where G has infinite abelianisation 

(in other words, where the exponent sums of x4 and x5 in r 3 are equal). But in 

those cases we can verify by Reidemeister-Schreier rewriting that  the commuta tor  

subgroup of G is cyclic, and hence G is locally indicable, as required. 

Finally, suppose that  each of x l, x2, x3 occurs in r5. Then, after replacing some 

generators and/or  relators by their inverses if necessary, and possibly interchang- 
a(1) b(1) a(2) b(2) -- a(3) b(3) 

ing x4 and Xh, we have r l  ---- .~lX 4 x 5 , r2  : x 2 x  5 x 1 , r5 ~ x 3 x  1 x 2 , 
a(4) b(4) a(5) b(5) 

r3 = x4x 2 x 3 , and r4 -- XhX 3 x 4 , where a(i) ,b(i)  = :kl for all i. A 

computer  search through all 21~ possible values of the a(i) and b(i), using coset 

enumeration, verifies that  in all cases G is finite. | 

Proof  o f  Theorem 1.4: Suppose G = ( x l , . . . [  r l , . . . , r k ) ,  where k _< 5 and 

each relator has length (at most) 3. Any relators of length less than 3 may be 
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eliminated (along with a generator in each case) wi thout  affecting G, so we may  

assume tha t  all relators have length 3. We may also assume tha t  each generator  

occurs in at least two relators. By Lemma 3.7 we may assume tha t  there are no 

more generators than  relators, and by Lemma 3.4 we may assume tha t  there are 

at least 5 generators,  so we assume tha t  there are precisely five generators and 

five relators. 

If  the graph F has more than  one edge, then the result follows from Lemma 

3.9, so assume tha t  F has at most  one edge. If  some relator involves a generator  

xi twice, then either there is an edge labelled xi oriented towards tha t  relator, 

or the generator  xi occurs more than  three times, in which case to compensate  

there must  be another  generator  xj occurring fewer than  three times, and hence 

an unoriented edge xj in F. Since F has only one edge, there can be at most  one 

relator of this form. In other words there at least 4 relators r l , . . . ,  r4 say, each of 

which involves three distinct generators. The result now follows from Theorem 

3.10. | 

Proof of Corollary 1.5: If some relator has the form r = x t for some generator 

x and integer t ~ 0, then x = 1 in G, so we may omit  x and r from the 

presentation, deleting all occurrences of x from other relators as we go. This 

reduces the number  of relators, without  changing G or increasing complexity. 

Wi thou t  loss of generality, we may assume there are no such relators. 

Next, any relator of length 2 has the form r = x~y ~ for distinct generators 

x, y, where a,  ~ E {=kl}. We may remove r and y, replacing every occurrence of 

y in other relators by x -~z ,  wi thout  changing G or increasing complexity. Hence 

we may assume tha t  every relator has length at least 3. 
a(1) a(2) a(k)  Finally, if r = xl  x2 . . -  x k is a relator with k >_ 4, we may  introduce k -  3 

a(1) a(2) Y41X3(3)y5, new generators Y4, . . . ,  Yk and replace r by k - 2  relators x 1 x 2 Y4, 
--1 a(k--1) a(k) �9 " ,  Yk xk-1 xk , without  changing G or the complexity. Repeat ing for all 

relators, we obtain  a presentat ion in which all relators have length 3. The number  

of relators is then equal to the complexity, which is at most  5 by hypothesis,  so 

we may  apply Theorem 1.4. | 
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